
Draft: Work in Progress

The General Mission Analysis Tool (GMAT)
System Test Plan

Darrel J. Conway
Thinking Systems, Inc.

Steven P. Hughes
Goddard Space Flight Center

August 7, 2007

Draft: Work in Progress

Contents

I Overview 5
1 Introduction 7

1.1 Overview . 7
1.2 Purpose of this Document . 7
1.3 Overview of the GMAT Development and Testing Process . 7
1.4 System Test Objectives . 8
1.5 Formal System Testing . 9
1.6 Items Not Addressed in System Tests . 9
1.7 Document Layout . 10

II System Test Procedures 11
2 System Test Preparation 13

2.1 Test Process . 13
2.2 Test Preparation . 13
2.3 Updating the Element Lists in the Test Matrices . 14
2.4 Updating the Test Case Lists . 17
2.5 Constructing the Test Cases . 18

2.5.1 Updating Script Based Test Cases . 18
2.5.2 Updating the GUI Test Cases . 22

2.6 Ensuring Complete System Coverage . 24

3 Executing Script Driven Tests 27
3.1 Script Test Case Management . 27
3.2 Running the Scripted System Tests . 28

3.2.1 Procedure . 28
3.2.2 A Note on Run Frequency . 29
3.2.3 Reporting Results . 30

4 Executing Tests for the Graphical User Interface 31
4.1 GUI Test Case Management . 31
4.2 Running the GUI System Tests . 32

4.2.1 Sample GUI Test Case . 33
4.2.2 Procedure . 37
4.2.3 Reporting Results . 37

4.3 Procedural Rules . 38
4.3.1 Test Procedures for All Elements . 38
4.3.2 Procedures for Speci�c Control Types . 39
4.3.3 Usability Testing . 41

2

Draft: Work in Progress
CONTENTS 3

5 Reporting and Reviewing Test Results 43
5.1 System Test Status . 43
5.2 The System Test Report . 43
5.3 System Test Review . 44

Draft: Work in Progress

List of Figures

2.1 The System Test Summary Page . 14
2.2 An Object Test Matrix . 15
2.3 The New Element Dialog . 16
2.4 A Test Case List . 16
2.5 The New Test Case Dialog . 17
2.6 A Test Tracking Spreadsheet . 25

3.1 The Script Test Tracking Spreadsheet . 28

4.1 The GUI Test Tracking Spreadsheet . 32
4.2 The OpenGLPlot Setup Panel . 36

4

Draft: Work in Progress

Part I

Overview

5

Draft: Work in Progress

Draft: Work in Progress

Chapter 1

Introduction

1.1 Overview
The General Mission Analysis Tool (GMAT) is a spacecraft mission analysis tool tailored to support missions
involving groups of spacecraft interacting throughout a modeled time period. The potential complexity of
this problem makes GMAT an intricate software system. This complexity necessitates a rigorous testing
environment to ensure that the system meets its objectives.

GMAT is designed using an object-oriented architecture[GDT] and coded using extensive object-oriented
structures written in C++. The object based approach employed in GMAT's design and implementation
makes the system robust and relatively easy to use for experienced analysts. The extent of the object model
implemented to make GMAT a complete and robust system dictates a comprehensive testing philosophy,
described in the GMAT Master Test Plan[MTP]. This document describes one component of the overall
testing strategy, the system testing.

System testing is a black box form of testing, designed to exercise the GMAT system from the user's
perspective. The system tests are designed to exercise all of the user accessible objects in GMAT.

1.2 Purpose of this Document
This document serves as the System Test Approach for the GMAT Project. Preparation for system testing
consists of three major stages:

• The Test Approach sets the scope of system testing, the overall strategy to be adopted, the activities
to be completed, the general resources required and the methods and processes to be used to test the
release. It also details the activities, dependencies and e�ort required to conduct the System Test.

• Test Planning details the activities, dependencies and e�ort required to conduct the System Test.

• Test Cases documents the tests to be applied, the data to be processed, the automated testing coverage
and the expected results.

This document covers the �rst two of these items, and established the framework used for the GMAT
test case development. The test cases themselves exist as separate components, and are managed outside of
and concurrently with this System Test Plan.

1.3 Overview of the GMAT Development and Testing Process
The GMAT development process identi�es several review points for the system. GMAT development is
conducted as a cooperative e�ort between an analysis team, typically composed of �ight dynamics specialists,

7

Draft: Work in Progress
8 CHAPTER 1. INTRODUCTION

and a development team consisting of talented software developers. New requirements for the system are
de�ned and written by the analysis team. Mathematical and design speci�cations are derived from these
requirements and compiled into a format that can be used to code the new functionality. Requirements,
Speci�cations, and Designs are reviewed by the development team prior to implementation. This review is
typically conducted in an informal, iterative manner until the speci�cations are understood by all involved
parties. The speci�cations and design documentation are then used to write the software.

During the development process, new features of a component under development may be detected that
need further speci�cation. When that happens, the new features are discussed and collected together. This
may result in an immediate update to the design documents, or it may result in collection of the new feature
implementation for inclusion in a �nal update performed when the component is ready for integration. In
either case, the design documentation is updated to re�ect the implemented functionality prior to formal
acceptance of the related components.

During development, the software undergoes internal testing in the development team at both a unit
and an integration level. Unit testing is intended to exercise all of the executable paths through the code,
validating that the internal working of the code behaves correctly. Integration testing takes unit tested
components and builds those components, either one at a time or collectively, into the system. From time
to time, the development team will interact with the analysis team during integration testing to con�rm
that the observed behavior of the new code conforms to the expectations of the users. Unit testing and
integration testing are performed in the course of the development of the software; neither will necessarily
provide test results in a formal manner, though informal communications of the component and integrated
test results are strongly encouraged.

When the GMAT development team completes integration of new functionality into the system, that new
functionality is ready for system test. GMAT system testing follows a more formal test procedure than unit
or integration testing. New components are exercised both from the GMAT scripting language and from
the GMAT Graphical User Interface (GUI). The test cases exercised are documented using the procedures
described later in this document. Test cases are managed using a traceability matrix that lists all of the
elements of GMAT visible at the user level, and matches those elements to test cases that are executed in
system testing. This master traceability matrix is used to generate a spreadsheet of test cases each time
GMAT enters a system test cycle. All tests are tracked using this spreadsheet; formal system test is complete
when every test case has been exercised and the results of the tests have been tabulated and accepted after
review.

1.4 System Test Objectives
At a high level, System Test intends to prove that

• The functionality, delivered by the development team, is as speci�ed by the Mathematical and Design
Speci�cations1.

• The software is stable and of high quality.

• The software models spacecraft missions faithfully.

• The software interfaces correctly with other systems, speci�cally MATLAB.

• The software user interfaces are stable, complete, and understandable by novice and experienced users.

These objectives are addressed through the development of a suite of test cases exercised on builds of
the GMAT system. Each major release of GMAT is tested using this suite, and the results of the tests
are collected and reviewd by all interested parties prior to release. This document describes the procedures
followed for system testing.

1System test does not provide a formal mechanism for mapping the system requirements to the implemented functionality;
that is the responsibility of Acceptance testing. The system test validates that the implemented functionality is correct.

Draft: Work in Progress
1.5. FORMAL SYSTEM TESTING 9

1.5 Formal System Testing
While system tests can be performed as soon as new features are available, there is not a requirement that
they must be performed at that time. However, system tests shall be performed prior to each major release
of GMAT to the aerospace community. Part of the GMAT release process includes a review of the system
test matrices and results to ensure that the system has maintained its integrity for the release. The review
performed at each major release:

• Checks the System Test matrices to ensure full system coverage for User Elements, Parameters, Com-
mands, and GUI Widgets.

• Ensures that the system tests have been run for all test cases.

• Ensures that the data produced from GMAT is consistent with known �truth� data.

• Ensures that system tests that failed have documented the cause or causes of the failure

• Ensures that any failures that must be addressed for the release have (1) been addressed and (2) that
the resulting correction has been validated to meet the expected results.

• Ensures that all scripting elements of GMAT have been exercised, and function correctly.

• Ensures that all GUI elements of GMAT have been exercised, and function correctly.

• Ensures that the system is stable. Stability in this context means that GMAT

� Does not crash
� Produces identical results on rerun
� Produces comparable results on all supported platforms
� Allocates and releases memory consistently, without long term memory artifacts (aka �memory

leaks�)
� Produces identical results when con�gured from the GUI, from a script �le, and when saved to

�le and reloaded, both into the running instance and into a new image.

• Ensures that GMAT performs e�ciently, both when executing mission sequences, and when saving and
loading missions.

System test review is performed by members of the analysis and development teams. Detailed testing of
the system numerics and scripting is performed by the domain experts on the analysis team. GUI testing is
performed by the development team.

While the formal test responsibilities are as described in the previous paragraph, both teams are encour-
aged to exercise the features being tested by the other team to help identify any additional issues that exist.
For example, the analysis team is encouraged to create all test cases using the GMAT GUI, and to report
any di�culties encountered when following this approach. Similarly, the development team is encouraged to
test the GUI in such a way as to produce functional models, to run those models, and to report any resulting
anomalous behavior. This cross checking of functionality ensures that the system has been exercised as much
as possible, given the resources available for development of GMAT.

1.6 Items Not Addressed in System Tests
The system tests described in this document are used to validate the stability and accessibility of GMAT
components to users attempting to use the system to solve �ight dynamics problems. These tests do not
address several key system elements. Those elements are covered by other components of the GMAT test
suite.

Speci�cally, the tests de�ned in this document do not address these items:

Draft: Work in Progress
10 CHAPTER 1. INTRODUCTION

• Internal data representations and data �ow in the GMAT code. These elements are tested in the
GMAT unit and integration test processes.

• Numerical �delity of the models. The detailed numerical testing of the components are part of the
GMAT acceptance tests.

• Data range validation. The data range tests are performed as part of the integration tests.

• Requirements Validation. The mapping of GMAT capabilities to the system requirements is made and
validated in the GMAT acceptance tests.

1.7 Document Layout
The remainder of this document describes the procedures followed to prepare for, conduct, and document
the GMAT system tests. Chapter 2 describes the procedured followed when preparing for the system tests.
Chapters 3 and 4 document the procedures followed when running the test cases. Chapter 5 describes the
data collection and review procedures followed for the system. The Appendices at the end of the document
provide additional information that may be useful during system test.

Draft: Work in Progress

Part II

System Test Procedures

11

Draft: Work in Progress

Draft: Work in Progress

Chapter 2

System Test Preparation

The GMAT system tests are designed to perform a �black box� examination of GMAT as an assembled
system. The system tests exercise all of the elements of the system from both the scripting and graphical
user interface perspectives. Traceability matrices are maintained to ensure that the entire system is exercised
upon completion of the system tests. This chapter describes these matrices, and provides instructions about
how to maintain and extend them.

2.1 Test Process
System testing is performed in three stages: test preparation, system testing (consisting of Script based
Testing and GUI Testing), and test result reporting. The test preparation phase, described in this chapter,
is used to update the system test cases with tests covering new capabilities of GMAT, and to add or update
existing test cases based on lessons learned from previous testing. Procedures followed when executing the
script based are described in Chapter 3. GUI testing procedures are given in Chapter 4. Both of those
chapters include descriptions of the data collection for individual tests. Chapter 5 describes the process of
accumulating the test results so that the status of the system can be evaluated.

2.2 Test Preparation
GMAT system testing is managed from a set of OpenO�ce[OOo] spreadsheets. The test case structure and
mapping between system functionality and corresponding tests is tracked using the "SystemTestMatrix.ods"
spreadsheet1. This spreadsheet contains pages identifying detailed GMAT functionality and de�ned system
test cases, and maps each element of functionality to one or more test cases.

The spreadsheet includes a summary page, shown in Figure 2.1, which computes coverage for the elements
tabulated on the detail pages. If the tables in the spreadsheet are up to date, then the summary page is an
indicator of the readiness of the system tests. Hence the �rst task that testers perform when preparing for
system testing is to update the test matrices. Once the test matrices have been updated, the test cases are
updated to cover any new functionality in the system. Test preparation is �nished when a complete set of
test cases has been developed, covering all of the elements in the updated test matrix tables.

To summarize, when a new piece of functionality is added to GMAT that users can access, the test team,
working with the developers and users, updates the test matrices by performing three steps:

1. Identify and add all new elements of the system to the test matrices.
1All of the GMAT test tracking components are con�guration controlled. Interested parties can obtain the current versions

of these testing artifacts by contacting one of the GMAT team leads.

13

Draft: Work in Progress
14 CHAPTER 2. SYSTEM TEST PREPARATION

Figure 2.1: The System Test Summary Page

2. Identify test cases that cover the new elements. This may involve modifying existing test cases or
creating new test cases, depending on the functionality of the new element.

3. Create or update the test cases as needed to implement the planned coverage identi�ed in item 2.

When these steps have been performed, the coverage matrices are up to date, and the test team is ready
to run the system test by executing all of the test cases in the matrices. The following paragraphs describe
the procedure for executing these steps.

2.3 Updating the Element Lists in the Test Matrices
Figure 2.2 shows an example of the matrices used to identify GMAT's implemented functionality. Separate
tables exist for the user accessible Components (Spacecraft, Solvers, Propagators, and so forth), Parameters
that GMAT can calculate, Commands used when de�ning the mission sequence, Graphical User Interface
elements (GuiElements), and miscellaneous other con�gurable elements. These tables capture a static view
of every item that a user can interact with when running GMAT.

Each table lists the con�gurable elements in column A, and constructs, when appropriate, con�gurations
and subcon�gurations of those objects in columns B (labeled �Cases�) and C (�Subcases�). Column D,
�Notes�, is used to indicate other considerations. Elements that are not yet scheduled for testing can be
entered in the tables; when that happens, the entry in the �Notes� column should be set to the keyword
�DEFERRED�.

Draft: Work in Progress
2.3. UPDATING THE ELEMENT LISTS IN THE TEST MATRICES 15

Figure 2.2: An Object Test Matrix

The �rst step in updating the test matrices is to ensure that the lists of accessible elements are complete,
capturing any new elements and con�gurations added to the system since the last time the matrix was
updated. Testers have two options for performing these updates: they can either edit the tables by hand,
and check that all related formatting and equations are updated correctly, or they can use the macros built
into the spreadsheet to add the new elements. The preferred approach is to use the macros, because that
approach ensures that the calculations performed by the tables are correct.

The summary page, shown in Figure 2.2, for the spreadsheet contains four buttons used to add elements
to the test matrices: �Add Resource�, �Add Parameter�, �Add Command�, and �Add GUI Element�. When a
user presses one of these buttons, a dialog box opens that is used to set some basic information for the new
element that is being tested. Figure 2.3 shows an example of this dialog.

When this dialog is opened, users can change the type of new element being con�gured using the Element
Type combo box. This option is provided in case the user selected the wrong button from the summary
page. The user enters the name of the new element in the ElementName �eld.

Many of the elements that are tested can be exercised more than one way; for example, the Impulsive
Burn element can be set to run using Velocity-Normal-Binormal (VNB) delta-V vectors or a coordinate
system based delta-V vector. Each of these modes should be tested independently, so a separate line should
exist for each on the spreadsheet. The user reserves multiple lines on the spreadsheet by entering the number
of lines required in the �Spreadsheet Lines Needed� �eld.

After setting the data correctly on the new element dialog, the user presses the `OK� button. When
this action is taken, the test matrix corresponding to the type of the new element is updated. New rows
are inserted into the spreadsheet for the new element, and the formulas for the new rows are set. Finally,

Draft: Work in Progress
16 CHAPTER 2. SYSTEM TEST PREPARATION

Figure 2.3: The New Element Dialog

the �elds that are used to calculate the test preparation statistics are updated. If more than one row was
inserted, the spreadsheet page is set to the page containing the new element, with the active cell selected to
the �Cases� �eld for the new element, so that the user can enter the test cases required for the new element.
Each test case and subcase should be entered at this time so that the element descriptions in the test matrix
re�ect the capabilities that need to be tested.

At this point, all of the functionality in GMAT should be represented by rows in the test matrices. The
next step is to plan test cases that cover elements of the system that are not already handled in the test
suite.

Figure 2.4: A Test Case List

Draft: Work in Progress
2.4. UPDATING THE TEST CASE LISTS 17

2.4 Updating the Test Case Lists
There are two categories of test cases used in system testing GMAT, designed to exercise the system using
scripting and the graphical user interface. When new components are added to GMAT, the test coverage
matrix is updated to exercise those new elements using the procedure described above. This update produces
holes in the system test suite, requiring either an update of the current test cases or the development of new
test cases, depending on the nature of the new components.

The test case lists are broken into two groups: tests based on script �les designed to exercise all com-
ponents used in modeling a mission, and user interface exercises designed to test the functionality and
completeness of the graphical user interface. The test tracking spreadsheet has separate pages for the GUI
and script based test cases. Figure 2.4 shows the page for the script cases; the GUI test case page is similar.

When a test case is added to the test case list using the spreadsheet macros described below, that test
case name is automatically picked up on the coverage tables. Once this update has been made and the new
test cases have been added to the system test suite, users of the test matrix spreadsheet edit the matrices to
indicate the covered functionality. In summary, the procedure for incorporating a new test case is to perform
these three steps:

1. Test case planning: Identify and name the new test cases, and update the spreadsheet to list these
cases.

2. Test case writing: Write the new test cases, and update any older test cases that need updating.

3. Test Matrix Mapping: Working from the new test cases, �ll in the coverage tables for each new or
changed test case to re�ect the features actually covered.

Figure 2.5: The New Test Case Dialog

The procedure for adding a test case to the test case list is similar to the procedure for adding a new
element to the test matrices. Test cases are added to the system test matrices using the �Add Script Testcase�
and �Add GUI Testcase� buttons on the summary page of the spreadsheet. Pressing either of these buttons
opens the New Test Case dialog, shown in Figure 2.5.

When a new test case has been identi�ed, a user will open the system test spreadsheet and press the
button for the desired test case type, opening this dialog. The user then enters the name of the new test
case. The user enters a summary description of the test case as well to help track the goal of the test case.

Draft: Work in Progress
18 CHAPTER 2. SYSTEM TEST PREPARATION

Finally, the user selects the desired frequency for execution of the test case; cases that can be automated
and run frequently, or that test critical features of the system, should be set to run more frequently than
those that are labor intensive or that test rarely used GMAT features.

The user accepts the new test case by selecting the �OK� button on the spreadsheet. When this action is
taken, several things happen in the tables in the spreadsheet. First new test case is added to the appropriate
page of the spreadsheet, along with its descriptions and execution frequency. The status of the test case is
set to �Not started�, indicating that the test case itself is not yet in the system test suite of test cases. The
new test case is added to the column labels of the test matrices on the subsequent pages, and the formulae
in in the spreadsheet are updated to track the new tests.

This step completes the test case planning phase of the preparation process. The next step is to write
the test cases themselves.

2.5 Constructing the Test Cases
The steps described so far ensure that there is a plan in place to test every element of GMAT for a black
box perspective. At this point, the test cases requires for the system test have been identi�ed. Next the test
team needs to write the test cases, given the new functionality of the system. The goal for each test case is
to test an integrated set of system elements when executing a speci�ed set of goals.

For the script based tests, this usually involves assembling a set of elements together and performing
some computations in a mission sequence. The results of the execution of the script are compared to known
good data in order to validate that the execution behaved as expected. Additionally, the script based testing
checks to see that scripting errors are handled gracefully, producing error messages that are clear for typical
GMAT users.

GUI based scripts have similar goals. The goals of the GUI test cases are to ensure that the GMAT
user interface lets users con�gure all of the elements of the system, that this con�guration is re�ected in the
internal components of the system, and that the user interface handles anomalous conditions robustly.

The following paragraphs describe the approach taken to ensure that these goals are met.

2.5.1 Updating Script Based Test Cases
Script based test cases consist of a script �le and validated output �les generated from the script. All script
based tests should be created from the GMAT GUI, so that any related user interface issues can be identi�ed
during the process. Once a scripted test has been constructed, it should be saved with the same �le name
as entered in the test case table.

Each script based test should generate output in the form of a text �le, using GMAT's reporting capabil-
ities. Unless explicitly stated otherwise, the output �le name should be the same as the script �le name with
the �le extension �.report�. The header comments on the script based tests should indicate the following
information:

• The �rst line of the script should be �%% Id�. This ensures that the CVS version information is
stored with the script. This CVS information is the tracking identi�er for each system test case.

• The primary elements being tested.

• Any ancillary items that should also be examined in the execution of the test.

• Any dependencies that need to be met to run the test successfully. For example, the FminconOptimizer
requires a GMAT build that includes the MATLAB interfaces, a valid licensed MATLAB executable
on the test machine, and a valid licensed copy of MATLAB's Optimization Toolbox.

• The name of the output �les generated, is their name di�ers from the standard output �le name.

• Whether the output data is expected to match data from previous runs.

Draft: Work in Progress
2.5. CONSTRUCTING THE TEST CASES 19

• Any special steps that should be taken, either prior to the run or after it completes.

A sample script test case is provided here:

1 %% $Id: BasicProp.m,v 1.5 2006/10/11 16:37:00 dconway Exp $
2 %% GMAT System Test Script File
3 %
4 % This test case is designed to test the following elements:
5 %
6 % 1. Spacecraft state specification in Earth MJ2000 Cartesian, Keplerian, and
7 % Modified Keplerian Coordinates.
8 % 2. Force models appropriate to LEO, HEO and GEO orbits.
9 % 3. Basic orbit Propagation.

10 %
11 % The only output file is BasicPropHEOReport.txt, which contains various output
12 % parameters for the HEO spacecraft. The data in this report should be the same
13 % from run to run.
14 %
15 % There are no external dependencies.
16 %
17 % This file has been edited to reduce size, so that it can be used as an example
18 % in the System Test Plan.
19

20 Create Spacecraft LEO;
21 GMAT LEO.DateFormat = TAIModJulian;
22 GMAT LEO.Epoch = 21545;
23 GMAT LEO.CoordinateSystem = EarthMJ2000Eq;
24 GMAT LEO.StateType = Cartesian;
25 GMAT LEO.X = 7100;
26 GMAT LEO.Y = 0;
27 GMAT LEO.Z = 1300;
28 GMAT LEO.VX = 0;
29 GMAT LEO.VY = 7.35;
30 GMAT LEO.VZ = 1;
31

32 Create Spacecraft HEO;
33 GMAT HEO.DateFormat = TAIGregorian;
34 GMAT HEO.Epoch = 12 Sep 2006 21:28:00.000;
35 GMAT HEO.CoordinateSystem = EarthMJ2000Eq;
36 GMAT HEO.StateType = Keplerian;
37 GMAT HEO.SMA = 43200;
38 GMAT HEO.ECC = 0.8;
39 GMAT HEO.INC = 78;
40 GMAT HEO.RAAN = 15;
41 GMAT HEO.AOP = 35;
42 GMAT HEO.TA = 120;
43

44 Create Spacecraft GEO;
45 GMAT GEO.DateFormat = UTCGregorian;
46 GMAT GEO.Epoch = 25 Dec 2010 00:00:00.000;
47 GMAT GEO.CoordinateSystem = EarthMJ2000Eq;
48 GMAT GEO.StateType = ModifiedKeplerian;

Draft: Work in Progress
20 CHAPTER 2. SYSTEM TEST PREPARATION

49 GMAT GEO.RadPer = 42164.5;
50 GMAT GEO.RadApo = 42165.5;
51 GMAT GEO.INC = 0.5;
52 GMAT GEO.RAAN = 90;
53 GMAT GEO.AOP = 90;
54 GMAT GEO.TA = 90;
55

56 Create ForceModel LeoProp_ForceModel;
57 GMAT LeoProp_ForceModel.CentralBody = Earth;
58 GMAT LeoProp_ForceModel.PrimaryBodies = {Earth};
59 GMAT LeoProp_ForceModel.Drag = Exponential;
60 GMAT LeoProp_ForceModel.Gravity.Earth.Degree = 20;
61 GMAT LeoProp_ForceModel.Gravity.Earth.Order = 20;
62 GMAT LeoProp_ForceModel.Gravity.Earth.PotentialFile = c:/GmatDataFiles/gravity/earth/JGM2.grv;
63 GMAT LeoProp_ForceModel.Drag.AtmosphereBody = Earth;
64

65 Create Propagator LeoProp;
66 GMAT LeoProp.FM = LeoProp_ForceModel;
67 GMAT LeoProp.Type = RungeKutta89;
68

69 Create ForceModel HeoProp_ForceModel;
70 GMAT HeoProp_ForceModel.CentralBody = Earth;
71 GMAT HeoProp_ForceModel.PrimaryBodies = {Earth};
72 GMAT HeoProp_ForceModel.Drag = MSISE90;
73 GMAT HeoProp_ForceModel.SRP = On;
74 GMAT HeoProp_ForceModel.Gravity.Earth.Degree = 4;
75 GMAT HeoProp_ForceModel.Gravity.Earth.Order = 4;
76 GMAT HeoProp_ForceModel.Gravity.Earth.PotentialFile = c:/GmatDataFiles/gravity/earth/JGM3.grv;
77 GMAT HeoProp_ForceModel.Drag.InputSource = Constant;
78

79 Create Propagator HeoProp;
80 GMAT HeoProp.FM = HeoProp_ForceModel;
81 GMAT HeoProp.Type = RungeKutta89;
82

83 Create ForceModel GeoProp_ForceModel;
84 GMAT GeoProp_ForceModel.CentralBody = Earth;
85 GMAT GeoProp_ForceModel.PrimaryBodies = {Earth};
86 GMAT GeoProp_ForceModel.PointMasses = {Sun, Luna, Jupiter, Venus};
87 GMAT GeoProp_ForceModel.SRP = On;
88 GMAT GeoProp_ForceModel.Gravity.Earth.Degree = 4;
89 GMAT GeoProp_ForceModel.Gravity.Earth.Order = 4;
90

91 Create Propagator GeoProp;
92 GMAT GeoProp.FM = GeoProp_ForceModel;
93 GMAT GeoProp.Type = PrinceDormand78;
94 Create ReportFile HeoReport;
95 GMAT HeoReport.Filename = BasicPropHEOReport.txt;
96 GMAT HeoReport.Precision = 16;
97 GMAT HeoReport.Add = {LEO.A1Gregorian, LEO.A1ModJulian, LEO.ElapsedSecs, ...
98 LEO.ElapsedDays, LEO.Earth.SMA, LEO.Earth.ECC, LEO.EarthMJ2000Eq.INC, ...
99 LEO.EarthMJ2000Eq.RAAN, LEO.EarthMJ2000Eq.AOP, LEO.Earth.TA};

Draft: Work in Progress
2.5. CONSTRUCTING THE TEST CASES 21

100

101 %%--
102 %%---------- Mission Sequence
103 %%--
104 Propagate LeoProp(LEO, {LEO.ElapsedSecs = 8640.0});
105 Propagate HeoProp(HEO, {HEO.ElapsedSecs = 432000.0});
106 Propagate GeoProp(GEO, {GEO.ElapsedDays = 30.0});

If a script test case fails any of the system test criteria speci�ed in Chapter 3, the tester creates a test
report summarizing the nature of the failure. A sample completed report is shown here:

1 $Id: MatlabApsidesCheck.txt,v 1.3 2006/11/23 00:27:43 dconway Exp $
2

3

4 Tester: ___D. Conway__________________ Date: _11/21/06________________
5

6

7 Platform: _X_ Windows, Version: XP, Service Pack 2____
8

9 ___ Macintosh, OS X Version: _______________
10

11 ___ Linux, Distribution: ___________________
12

13

14 Description:
15

16 This test validates the MATLAB interface, including passing of arrays into
17 MATLAB and receipt of data back from MATLAB.
18

19

20 Script Test Results:
21

22 Loads Correctly: [XX] Pass [] Fail Bug# ______
23

24 Runs Correctly: [XX] Pass [] Fail Bug# ______
25 [] Unable to evaluate
26

27 3D Visualization: [] Pass [] Fail Bug# ______
28 [XX] Not Applicable
29 [] Unable to evaluate
30

31 Plots: [] Pass [] Fail Bug# ______
32 [XX] Not Applicable
33 [] Unable to evaluate
34

35 Output: [XX] Pass [] Fail Bug# ______
36 [] Not Applicable
37 [] Unable to evaluate
38

39 Truth Data: [] Pass [XX] Fail Bug# _511__
40 [] Not Applicable
41 [] Unable to evaluate

Draft: Work in Progress
22 CHAPTER 2. SYSTEM TEST PREPARATION

42

43 Rerun: [XX] Pass [] Fail Bug# ______
44 [] Not Applicable
45 [] Unable to evaluate
46

47 Save and Load: [] Pass [XX] Fail Bug# _512__
48 [] Unable to evaluate
49

50 Summary:
51

52 Number of passed test elements __4___
53

54 Total number of test elements __6___
55

56 Test case status [] Pass [X] Fail
57

58

59 Bugs Reported:
60

61 511, 512
62

63 Notes:
64

65 1. Truth data file shows a defect in data handling when receiving data from
66 MATLAB. The MATLAB return only has 6 digits of precision. A bug needs to be
67 entered into Bugzilla for this defect.
68

69 2. Save fails when there are multiple conditions on an If command.

2.5.2 Updating the GUI Test Cases
GUI based test cases consist of a text �le describing the test. The GUI test cases may include additional
�les, depending on the nature of the test. For example, the script reading GUI test includes a script that
needs to be read. The purpose of the GUI tests is to validate that the build is stable, and that the user
interface panels provide complete coverage of the elements of the system visible to the user.

The GUI test cases forms are relatively simple. They provide, in outline form, guidelines for testing the
GUI elements. Detailed instructions for the GUI tests are provided in Chapter 4.

A sample GUI test case is provided here:

1 $Id: ImpulsiveBurnPanel.txt,v 1.4 2006/10/13 19:22:24 dconway Exp $
2

3 Description: This test validates the functionality of the Impulsive Burn
4 configuration panel.
5

6 Procedure:
7

8 1. Open GMAT. Create an ImpulsiveBurn resource.
9

10 [] Pass [] Fail Bug# ______
11

12 2. Open the panel for the new ImpulsiveBurn.

Draft: Work in Progress
2.5. CONSTRUCTING THE TEST CASES 23

13

14 [] Pass [] Fail Bug# ______
15

16 3. Evaluate the aesthetic qualities of the panel.
17

18 [] Pass [] Fail Bug# ______
19

20 4. Evaluate the panel functionality by exercising these elements:
21

22 Axes ComboBox [] Pass [] Fail Bug# ______
23

24 Vector Format ComboBox [] Pass [] Fail Bug# ______
25

26 Vector Element 1 Text [] Pass [] Fail Bug# ______
27

28 Vector Element 2 Text [] Pass [] Fail Bug# ______
29

30 Vector Element 3 Text [] Pass [] Fail Bug# ______
31

32 Origin ComboBox [] Pass [] Fail Bug# ______
33

34 5. Evaluate panel save/cancel/restore functionality.
35

36 Cancel [] Pass [] Fail Bug# ______
37

38 Apply [] Pass [] Fail Bug# ______
39

40 Save [] Pass [] Fail Bug# ______
41

42 Restore [] Pass [] Fail Bug# ______
43

44 Window Icons [] Pass [] Fail Bug# ______
45

46 6. Evaluate rename functionality.
47

48 [] Pass [] Fail Bug# ______
49

50 7. Validate that the configured object is correct on run.
51

52 [] Pass [] Fail Bug# ______
53

54 8. Perform additional experiments with the panel controls.
55

56 Summary:
57

58 Test case status:
59

60 [] Pass [] Fail
61

62 Bugs Reported:
63

Draft: Work in Progress
24 CHAPTER 2. SYSTEM TEST PREPARATION

64 Notes:
65

66

67

68

69 Tester: ____________________________
70

71 Date: ____________________________

Failed GUI tests provide information about the nature of the failure durectly on the test case form; there
is no supplementary report for GUI test failures.

2.6 Ensuring Complete System Coverage
Once the test cases have been written, all that remains for test proparation is the con�rmation that the
test cases cover all of the new features of GMAT. This is accomplished by updating the test matrices based
on the new and revised test cases. Each test case that has been added or changed since the last update is
collected and used to update the matrices. For each page in the spreadsheet containing an element to test
case table, the test team needs to update the matrix for these test cases. The test cases are listed across
the top of the matrices. Each test case identi�es the tested elements by placing an �X� marker in the row
corresponding to that element. Updated test cases should be examined to ensure that elements previously
tested are still tested; if an elemnet is no longer tested for a speci�c test case, the X for that element should
be removed from the matrix.

The spreadsheet contains formulas that use these markers to determine if a given element has a corre-
sponding test case. The far right side of the test matrices tables accumulates this data; every element that
has at least one associated test case receives a coverage value of 1; uncovered elements receive a coverage
value of 0. The far right side of the table also includes a column labeled �Row Count.� The row count
column simply counts the number of elements on the page.

The summary page examines each table in the spreadsheet and provides information about the coverage
completeness of the system tests. Once the coverage statistics report that the elements of the system are
covered 100%, the system tests are ready to be run. The test team then generates a new spreadsheet for
each type of system test by pressing the �Create Script Test Tracker� and �Create GUI Test tracker� buttons
on the summary page. These buttons generate single page spreadsheets used to track progress through the
system test. An example is shown in Figure 2.6.

This spreadsheet is used to track and report system test progress. As each system test is performed, the
entry in the tracking spreadsheet is updated by the test team. Examination of this spreadsheet provides a
status check on the system test.

The next two chapters provide instructions about the steps performed when running the system tests.

Draft: Work in Progress
2.6. ENSURING COMPLETE SYSTEM COVERAGE 25

Figure 2.6: A Test Tracking Spreadsheet

Draft: Work in Progress
26 CHAPTER 2. SYSTEM TEST PREPARATION

Draft: Work in Progress

Chapter 3

Executing Script Driven Tests

The tests described in this chapter are designed to exercise all accessible objects in the core GMAT engine, in
as many combinations as is feasible. This object coverage is performed by running GMAT scripts designed
to interact with the accessible objects from the Graphical User Interface. Each script produces output.
The system testers examine this output, and, when possible, compare it with the con�guration managed
output produced from previous runs of the scripts. The procedure followed when running scripted tests is
documented in the sections of this chapter.

3.1 Script Test Case Management
The System test cases are managed from a spreadsheet generated at the conclusion of the system test
preparation process. Figure 3.1 shows an example of this test tracking spreadsheet for the script based
tests1, as it looks partway through a test cycle.

The test procedure for script based tests is relatively straightforward. Testers follow these steps when
executing the system tests:

1. Obtain the latest versions of the scripts and known good results from the system test repository.

2. Identify the tests each tester needs to run.

3. Open GMAT2.

4. Run each test following the procedure in 3.2.

5. As each test is run, record the summary results in a local copy of the test tracking spreadsheet.

6. When anomalies are found in testing, record them local test case report �les.

7. At the end of each day or when testing is �nished, whichever occurs �rst, gather the test case reports
generated from the tests and place them in the folder used to gather the test results.

8. Close GMAT at the end of the test period.

9. At the end of each day or when testing is �nished, whichever occurs �rst, save the local test tracking
spreadsheet with the name <spreadsheetName>_<tester's initials> in the folder used to gather the
test results.

1The test tracking spreadsheets, unlike the traceability matrix spreadsheet, can be saved in either OpenO�ce or Excel
format.

2GMAT should only be opened one time for any given testing period. All tests run during that test period � typically a
morning or afternoon � should be run in the same instance of GMAT. This helps ensure that the system is stable over long
periods of time. If the system is shut down, either by the user or through a system crash, that event should be noted.

27

Draft: Work in Progress
28 CHAPTER 3. EXECUTING SCRIPT DRIVEN TESTS

Figure 3.1: The Script Test Tracking Spreadsheet

10. Upon completion of all assigned test cases, report that status to the system test lead.

3.2 Running the Scripted System Tests
By their very nature, the GUI based tests described in Chapter 4 follow a relatively unstructured execution
sequence that mandates more structured test case documents to ensure complete system testing. In contrast,
the script based tests follow a linear execution sequence once the scripts have been written and debugged.
The rest of this chapter describes the procedure followed for the scripted tests.

3.2.1 Procedure
Each scripted test case has an associated, con�guration managed script. Most script test cases also have
output data �les used to compare the obtained script outputs with validated GMAT output �les. A tester
follows this procedure to perform the associated system test:

1. Open a blank test case report �le3.
3The test case report �le is only needed for script based tests is an anomaly is found during testing. In practice, the test

Draft: Work in Progress
3.2. RUNNING THE SCRIPTED SYSTEM TESTS 29

2. Open the script in GMAT.

3. Compare the resources displayed in GMAT with the resources de�ned in the script. Enter any anomalies
in the test case report.

4. Compare the mission sequence in the script with the mission sequence displayed in GMAT. Enter any
anomalies in the test case report.

5. Run the script.

6. Examine each plot and 3D view that opens. Enter any anomalies on the in the test case report.

7. Compare the output results from the run with the known good data. Enter any anomalies in the test
case report.

8. Press the run button.

9. Examine each plot and 3D view that opens. Enter any anomalies on the in the test case report.

10. Compare the output results from the run with the known good data. Enter any anomalies in the test
case report.

11. Open the script in the editor window, and press the �Build and Run� button.

12. Examine each plot and 3D view that opens. Enter any anomalies on the in the test case report.

13. Compare the output results from the run with the known good data. Enter any anomalies in the test
case report.

14. Save the script to a new �le with the name Saved_<Test case name>.

15. Load the saved script into GMAT.

16. Repeat steps 3 through 11

17. If any anomalies have been found, �ll in the header and summary data on the test case report, and
save it with the �le name �<test case>_YYYYMMDD.report�, where YYYYMMDD indicate the year,
month and day the test was run.

3.2.2 A Note on Run Frequency
The script based tests can be run much more frequently than is feasible for the GUI tests. Scripts that are
identi�ed as being run more frequently than at the system test frequency follow a somewhat abbreviated
procedure from that de�ned at the system test level. The purpose of the more frequent testing is to help
catch errors in the system prior to format system testing. Teh abbreviated test procedure performed for
each weekly or monthly test is presented here:

1. Open the script in GMAT.

2. Run the script.

3. Examine each plot and 3D view that opens. Report any anomalies.

4. Compare the output results from the run with the known good data. Report any anomalies.

5. If any anomalies have been found, enter a new anomaly in the bug tracking system.

These tests follow the full system test procedure when run as part of the system test suite.
case report only needs to be opened when an anomaly is found.

Draft: Work in Progress
30 CHAPTER 3. EXECUTING SCRIPT DRIVEN TESTS

3.2.3 Reporting Results
At the start of the system test process, a central location was established for collection of the test results.
The �nal step performed by the system testers is to copy their test case worksheets and local test tracking
worksheet to this central location. This action is performed each day the system tests are run so that the
progress of the system test execution can be evaluated. Upon completion of all system testing by a speci�c
tester, a �nal update is made and the system test lead is noti�ed that that tester has completed the assigned
tests. Chapter 5 describes the consolidation of the collected test results into a system test report.

Draft: Work in Progress

Chapter 4

Executing Tests for the Graphical User
Interface

The tests described in this chapter are designed to exercise all of the controls and other elements visible
from the GMAT graphical user interface (GUI). The GMAT GUI is designed to present a consistent, easy
to use interface into the underlying engine so that users of the system can view, con�gure, and interact with
the elements of the system during all phases of mission modeling. System testers work with these elements,
using them both to perform the expected tasks and to attempt to perform undesired actions. The former
set of actions exercises the engine to ensure that the system can be con�gured correctly. The latter tests are
run to ensure that users cannot con�gure GMAT incorrectly.

4.1 GUI Test Case Management
The GUI test cases are managed using a test tracking spreadsheet generated at the end of test preparation,
described in Chapter 2. Figure 4.1 shows an example of this spreadsheet partway through a testing cycle.

The test procedure for GUI based tests requires extensive exercising of the components in the GUI.
Testers follow these steps when executing the system tests:

1. Obtain the latest versions of the GUI test cases and a local copy of the test case tracking spreadsheet1.

2. Identify the tests that the tester needs to run.

3. Open GMAT2.

4. Run each test following the procedure in Section 4.2.

5. As each test is run, record the results of the test on the test case worksheet retrieved in step 1.

6. When anomalies are found in testing, record them on the test case worksheet and enter them in the
bug tracking database.

7. Close GMAT at the end of the test period.

8. At the end of each day or when testing is �nished, whichever occurs �rst, gather the completed test
case worksheets and place them in the folder used to gather the test results.

1The test tracking spreadsheet is generated from the Systen Test Matrix spreadsheet using an OpenO�ce macro, as described
in Section 2.6.

2GMAT should only be opened one time for any given testing period. All tests run during that test period � typically a
morning or afternoon � should be run in the same instance of GMAT. This helps ensure that the system is stable over long
periods of time. If the system is shut down, either by the user or through a system crash, that event should be noted.

31

Draft: Work in Progress
32 CHAPTER 4. EXECUTING TESTS FOR THE GRAPHICAL USER INTERFACE

Figure 4.1: The GUI Test Tracking Spreadsheet

9. At the end of each day or when testing is �nished, whichever occurs �rst, save the local gui test tracking
spreadsheet with the name <spreadsheetName>_<tester's initials> in the folder used to gather the
test results.

10. Upon completion of all assigned test cases, report that status to the system test lead.

The procedure for running a single test case is described next.

4.2 Running the GUI System Tests
By their very nature, the script based tests described in Chapter 3 follow a linear execution sequence once
the scripts have been written and debugged. In contrast, interactions performed using the GMAT GUI are
less structured � users can use the controls on the GUI in a seemingly random fashion � so the test cases for
the GUI include allowances for interacting with the GUI elements by the tester in a more free form manner
than the script based tests allow.

Draft: Work in Progress
4.2. RUNNING THE GUI SYSTEM TESTS 33

4.2.1 Sample GUI Test Case
A sample GUI test case is shown here:

1 $Id $
2

3

4 Tester: ______________________________ Date: _________________________
5

6

7 Description:
8

9 This test validates the functionality of the OpenGL panel.
10 (* indicates sub-panel whose functionality is tested separately)
11

12

13 Procedure:
14

15 1. Create and open the appropriate object panel.
16

17 Create OpenGL Resource [] Pass [] Fail Bug# ______
18

19 Open OpenGL Resource [] Pass [] Fail Bug# ______
20

21

22 2. Evaluate the aesthetic qualities of the panel.
23

24 Panel Aesthetics [] Pass [] Fail Bug# ______
25

26

27 3. Evaluate the individual panel elements.
28

29 Show Plot Check Box [] Pass [] Fail Bug# ______
30

31 Collect Data Text Field [] Pass [] Fail Bug# ______
32

33 Update Plot Text Field [] Pass [] Fail Bug# ______
34

35 Number of Points to Redraw Text Field [] Pass [] Fail Bug# ______
36

37 Draw Wireframe Check Box [] Pass [] Fail Bug# ______
38

39 Draw Targeting Check Box [] Pass [] Fail Bug# ______
40

41 Draw Ecliptic Plane Check Box [] Pass [] Fail Bug# ______
42

43 Draw XY Plane Check Box [] Pass [] Fail Bug# ______
44

45 Draw Axes Check Box [] Pass [] Fail Bug# ______
46

47 Draw Grid Check Box [] Pass [] Fail Bug# ______
48

Draft: Work in Progress
34 CHAPTER 4. EXECUTING TESTS FOR THE GRAPHICAL USER INTERFACE

49 Draw Earth/Sun Lines Check Box [] Pass [] Fail Bug# ______
50

51 Spacecraft List [] Pass [] Fail Bug# ______
52

53 Selected Spacecraft List [] Pass [] Fail Bug# ______
54

55 Celestial Object List [] Pass [] Fail Bug# ______
56

57 Selected Celestial Object List [] Pass [] Fail Bug# ______
58

59 --> (Add) Selection Button [] Pass [] Fail Bug# ______
60

61 <-- (Remove) Selection Button [] Pass [] Fail Bug# ______
62

63 < = (Remove All) Selection Button [] Pass [] Fail Bug# ______
64

65 Show Object Check Box [] Pass [] Fail Bug# ______
66

67 Orbit Color Select Box [] Pass [] Fail Bug# ______
68

69 Target Color Select Box [] Pass [] Fail Bug# ______
70

71 Use Initial View Definition Check Box [] Pass [] Fail Bug# ______
72

73 Use Perspective Mode Check Box [] Pass [] Fail Bug# ______
74

75 Use Fixed FOV Angle Check Box [] Pass [] Fail Bug# ______
76

77 Field of View Text Field [] Pass [] Fail Bug# ______
78

79 Coordinate System Combo Box [] Pass [] Fail Bug# ______
80

81 View Point Reference Combo Box (see 4a) [] Pass [] Fail Bug# ______
82

83 View Point Vector Combo Box (see 4b) [] Pass [] Fail Bug# ______
84

85 View Scale Factor Text Field [] Pass [] Fail Bug# ______
86

87 View Direction Combo Box (see 4c) [] Pass [] Fail Bug# ______
88

89 Coordinate System Combo Box [] Pass [] Fail Bug# ______
90

91 Axis Combo Box [] Pass [] Fail Bug# ______
92

93

94 4. Evaluate panel-specific functionality.
95

96 a. Select 'Vector' for View Point Reference
97

98 Vector 1 Text Field [] Pass [] Fail Bug# ______
99

Draft: Work in Progress
4.2. RUNNING THE GUI SYSTEM TESTS 35

100 Vector 2 Text Field [] Pass [] Fail Bug# ______
101

102 Vector 3 Text Field [] Pass [] Fail Bug# ______
103

104 b. Select 'Vector' for View Point Vector
105

106 Vector 1 Text Field [] Pass [] Fail Bug# ______
107

108 Vector 2 Text Field [] Pass [] Fail Bug# ______
109

110 Vector 3 Text Field [] Pass [] Fail Bug# ______
111

112 c. Select 'Vector' for View Direction
113

114 Vector 1 Text Field [] Pass [] Fail Bug# ______
115

116 Vector 2 Text Field [] Pass [] Fail Bug# ______
117

118 Vector 3 Text Field [] Pass [] Fail Bug# ______
119

120 Use Perspective Mode Check Box [] Pass [] Fail Bug# ______
121 --- select checkbox to check following
122

123 Use Fixed FOV Angle Check Box [] Pass [] Fail Bug# ______
124 --- select checkbox to check following
125

126 Field of View Text Field [] Pass [] Fail Bug# ______
127

128

129 5. Evaluate data.
130

131 Data elements appear complete [] Pass [] Fail Bug# ______
132

133 Show Script [] Pass [] Fail Bug# ______
134

135

136 6. Evaluate panel control.
137

138 Tab Key Navigation [] Pass [] Fail Bug# ______
139

140 Cancel [] Pass [] Fail Bug# ______
141

142 Apply [] Pass [] Fail Bug# ______
143

144 OK (Save) [] Pass [] Fail Bug# ______
145

146 Help [DEFERRED]
147

148 Restore [] Pass [] Fail Bug# ______
149

150 Minimize [] Pass [] Fail Bug# ______

Draft: Work in Progress
36 CHAPTER 4. EXECUTING TESTS FOR THE GRAPHICAL USER INTERFACE

151

152 Maximize [] Pass [] Fail Bug# ______
153

154 Close [] Pass [] Fail Bug# ______
155

156

157 7. Evaluate rename functionality.
158

159 Rename (on resource tree) [] Pass [] Fail Bug# ______
160

161

162 Summary:
163

164 Number of passed test elements ______
165

166 Total number of test elements ______
167

168 Test case status [] Pass [] Fail
169

170

171 Bugs Reported:
172

173

174

175 Notes:
176

177

Figure 4.2: The OpenGLPlot Setup Panel

Draft: Work in Progress
4.2. RUNNING THE GUI SYSTEM TESTS 37

The test case worksheet shown here is the test case for the OpenGL plot setup panel. The panel, shown in
Figure 4.2, is a fairly complex GUI panel, containing text �elds, combo boxes, check boxes, text lists, and
action buttons which open color selection dialogs. Each element is included in the test plan worksheet, along
with the standard control processes that need to be exercised. Each test criterion is evaluated using this
worksheet, and given a pass or fail evaluation.

4.2.2 Procedure
Each GUI test case has a worksheet like the one shown above. A tester follows this procedure to perform
the associated system test:

1. Open the test case worksheet.

2. Follow the procedure outlined in the test case.

• Section 4.3 provides detailed instructions about the process that should be followed when testing
each type of GUI element.

• Each item identi�ed in the worksheet is marked as either passing or failing the test. If the item
fails, an associated bug is entered or identi�ed in the bug tracking system and listed on the
worksheet.

• After completing the tests on the worksheet, the tester experiments with the component for an
additional period (typically ten to �fteen minutes), checking to be sure that the component is
stable and behaves correctly when bad data is entered, and when random actions are taken using
that component.

• Once every item on the worksheet has been evaluated and the �nal period of usability testing has
been performed, the number of pass and fail evaluations are counted and recorded in the summary
section of the test case worksheet. Any bugs identi�ed on the worksheet are listed in this section,
and any additional notes that need to be recorded are also listed here3.

3. Summarize the results of the tests.

• Once every item on the worksheet has been evaluated, an overall pass or fail evaluation is made
and recorded in the summary section. Any bugs identi�ed on the worksheet are listed in this
section, and any additional notes that need to be recorded are also listed here.

• Add the tester's name and the data the test was run to the worksheet.
• Save the completed test case worksheet.

4. Update the local test tracking worksheet to indicate that the test was run and the results of the run.

5. Save the test tracking worksheet.

4.2.3 Reporting Results
At the start of the system test process, a central location was established for collection of the test results.
The �nal step performed by the system testers is to copy their test case worksheets and local test tracking
worksheet to this central location. This action is performed each day the system tests are run so that the
progress of the system test execution can be evaluated. Upon completion of all system testing by a speci�c
tester, a �nal update is made and the system test lead is noti�ed that that tester has completed the assigned
tests. Chapter 5 describes the consolidation of the collected test results into a system test report.

3These data are collected using an automation tool to build a status report for the system tests.

Draft: Work in Progress
38 CHAPTER 4. EXECUTING TESTS FOR THE GRAPHICAL USER INTERFACE

4.3 Procedural Rules
The steps described in the preceding sections lay out the procedures followed when testing the GUI elements
of GMAT. In this section, the criteria that must be evaluated are de�ned for these tests.

4.3.1 Test Procedures for All Elements
Aesthetics
Description: This set of tests veri�es platform-speci�c look and feel of a panel, as extended by the GMAT
GUI Philosophy document[Dove]. Each criterion must be met to pass the aesthetics tests.

• All of the data input �elds and bounding boxes can be seen at the panel size displayed when the panel
is �rst opened, for all tabs on the panel.

• The blank space surrounding the data area is not distracting, and does not dominate the appearance
of the interface. As a guideline, for platforms that allow control of the surrounding white space, that
region should not consume more than 20% of the total space dedicated to the panel when it is opened.

• The data area does not appear too crowded; the surrounding blank space is appropriately sized.

• The window cannot be resized so that the data cannot be seen.

General Panel Functionality
Description: This is the list of tests associated with basic panel functionality: open, close, rename, minimize,
ok, cancel, help, show script, command summary. Additionally, the behavior of open panels needs to be
consistent with deletion actions taken on the resource and mission trees � if an object in the tree is deleted,
any open panel associated with that object should close. All of these functions must pass.

• New objects of the type being tested can be created from the appropriate tree on the Resource or
Mission panels.

• Double clicking in a new object opens the panel for that object.

• Double clicking in a object that has an open panel brings the panel for that object to the front of the
displayed panels.

• New objects can be renamed.

• Default objects, when they exist, can be renamed.

• Default objects, when they exist, can be deleted.

� The object can be renamed.
� References to the renamed object are updated in related elements of the system.

• Renaming works after making changes to the data on the object panel.

� The object can be renamed while the panel is open.
� A change can be made on the panel, and then the object can be renamed before the change is

applied.
� A change can be made on the panel, the change can be applied, and then the object can be

renamed.

Draft: Work in Progress
4.3. PROCEDURAL RULES 39

� For each of the above cases, references to the object's name are updated throughout the system
when the object's name is changed.

• Changes made on the panel and applied using the OK button appear on the panel when it is reopened.

• Changes made on the panel and applied using the Apply button are visible in the script when viewed
using the Show Script dialog.

• When you open the panel, make a minor change in the panel, and click button to close the panel (on
Windows, this is the small �x� button in the upper right hand corner; on the Mac, it is the red button
on the left side of the frame controls, and on Linux, varies based on the con�guration of the Linux
window manager), you are prompted to save data before closing. Check that:

� The prompt does appear.
� Selecting �Yes� updates the underlying data.
� Selecting �No� discards the changes.

• Cancelling closes the opened panel without changing the underlying data.

� The object does not change when you open the panel and press the Cancel button without making
any changes.

� The object does not change when you open the panel, make a minor change in the data, and press
the Cancel button.

� The object does not change when you open the panel and click the close button in the panel's
frame to close the panel, but the panel does close without prompting.

• The panel is minimized when the minimize button on the panel frame is pressed.

• The panel reopens to previous size when maximize icon on the minimized panel is pressed

• The tab key navigates the open panel in agreement with style and GUI design philosophy. Navigation
is orderly and sensible using the tab key.

Panel Data Element Completeness and Correctness
Description: This set of tests veri�es that all data elements that should appear on the panel are present on
the panel. It also tests that all elements that should appear in �Show Script� dialog appear there, and that
items that should not appear in show script do not appear there.

• Verify that only data elements that occur in the Range Test Plan appear in show script and that the
user does not see any other object �elds.

• Verify that defaults agree with the values in the Range Test Plan.

• Press the �Show Script� button, and verify that all elements on the GUI panel also appear on the show
script dialog. Verify that these elements match the description in the Range Test Plan.

• Verify that all data elements that appear in Show Script also appear on the GUI. (This step validates
that all scriptable settings also appear in the GUI.)

4.3.2 Procedures for Speci�c Control Types
The following table provides additional guidelines that should be followed when testing each speci�c type of
control.

Draft: Work in Progress
40 CHAPTER 4. EXECUTING TESTS FOR THE GRAPHICAL USER INTERFACE

Table 4.1: Tests for Data Objects on All Panels

Element Type Tests
Check Boxes • Set all check boxes to o� (unchecked), hit show script, and verify that

the functionality is indeed turned o� for each radio button and check
box.

• Set all check buttons to on (checked), hit apply, and show script and
verify that the functionality is indeed turned on for each radio button
and check box.

Radio Buttons • For each radio button on panel, select the button, and ensure that it
activates and all others are deactivated. Hit Apply, and then check
show script to ensure that the con�guration was properly saved.

Combo Boxes • For each combo box on the panel, ensure that all options that appear
in Range Test Plan appear in the pull down menu.

• For each Combo box on the panel, select each allowable option, hit
apply and show script and check to see that the option was correctly
saved.

• Check to ensure that the combo box is not editable.

Text Fields • For each text �eld enter �DNE" and ensure that if GMAT should
reject this string that the string is rejected. (Currently, this is not an
acceptable value for any GMAT �eld unless the user has created an
appropriate object type and named it DNE, and is using it correctly
in the GUI.)

• Perform all range tests as described in Range Test Plan.

• For all numeric �elds, enter an allowed numeric value, hit apply and
show script and check that the value was saved.

• If user-de�ned objects can appear in the combo box, create one object
for all allowable object types for the particular combo box, and ensure
that it appears in the combo box. Also, hit apply and ensure that
each case appears in show script.

Action Buttons • For each button ensure that clicking on the button brings up the
appropriate panel.

• For the panel opened up, perform all tests de�ned in Section 4.3.1
and Table 4.1

Selection Lists • First Item

• Second Item

Draft: Work in Progress
4.3. PROCEDURAL RULES 41

Table 4.1: (Tests for Data Objects on All Panels...continued)

Element Type Tests
Tabbed Panels • First Item

• Second Item

4.3.3 Usability Testing
The tests described in the preceding paragraphs are meant to exercise all of the elements of the graphical user
interface. One important aspect of the interface not covered by those tests is the usability of the system:
the GUI may perform error free as designed, and still be di�cult to use in practice. Usability testing is
performed to capture information about this aspect of the GUI.

Draft: Work in Progress
42 CHAPTER 4. EXECUTING TESTS FOR THE GRAPHICAL USER INTERFACE

Draft: Work in Progress

Chapter 5

Reporting and Reviewing Test Results

This chapter describes the process followed for tracking the state of the system test process and for reporting
the results of the testing.

5.1 System Test Status
The status of the system tests is tracked using the Script and GUI test tracking spreadsheets described in
Chapters 3 and 4. System testers update their copies of these spreadsheet daily during system testing. Once
a week or upon request, the system test lead consolidates these spreadsheets, collecting the test results in
master system test spreadsheets that can be reviewed by interested parties.

5.2 The System Test Report
At the conclusion of system test cycle, the reports generated during system test are consolidated into a single
document. This document is prepared using the following outline:

I. Overview

A. Executive Summary
B. Test Results
C. Recommendations

II. Script Test Case Results

A. Test Result Statistics
B. Summary of Failed Tests (if any)
C. Test Results

i. ParametersinCommands Test Case Report
ii. CbParams_GMAT_GEO_2Body Test Case Report

...

III. GUI Test Case Results

A. Test Result Statistics
B. Summary of Failed Tests (if any)
C. Test Results

43

Draft: Work in Progress
44 CHAPTER 5. REPORTING AND REVIEWING TEST RESULTS

i. Mainframe Test Case Worksheet
ii. Resource Tree Test Case Worksheet

...

5.3 System Test Review
The �nal step in the system test process is to perform a review of the test results. In preparation for this
review, each team member and reviewer reviews the System Test Report, highlighting any issues that raise
concerns. These parties then meet and discuss the �ndings of the system testing. The outcome of this review
is a list of action items, assigned to speci�c individuals or teams, and a recommendation about the status of
the system for release.

A typical release recommendation will fall into one of three categories: (1) GMAT is ready for release, (2)
GMAT is ready for release, contingent on speci�c items being addressed and approved prior to that release,
or (3) GMAT is not ready for release, and needs to meet speci�c items and be reviewed again before release
will be approved.

Following this review, a summary documenting the �ndings of the review is written and provided to all
team members and interested parties. Once GMAT has been released as an open source project, a public
version of this summary is made available with the other project artifacts.

Draft: Work in Progress

Bibliography

[Black] Rex Black, �Managing the Testing Process,� Second Edition, Wiley Publishing, 2002.

[Craig] Rick D. Craig and Stefan P. Jaskiel, �Systematic Software Testing,� Artech House, 2002.

[Dove] Edwin G. Dove, �GUI Philosophy for the General Mission Analysis Tool (GMAT).�

[MTP] GMAT Test Team, �General Mission Analysis Tool (GMAT) Master Test Plan.�

[GDT] GMAT Development Team, �General Mission Analysis Tool (GMAT) Architectural Speci�cation.�

[hughes] Steven P. Hughes, �General Mission Analysis Tool (GMAT) Mathematical Speci�cation.�

[hughes2] Steven P. Hughes, �General Mission Analysis Tool (GMAT) User's Guide.�

[matlab] The MathWorks, Inc, �MATLAB�, available from http://www.mathworks.com.

[OOo] OpenO�ce.org, �OpenO�ce�, available from http://www.openo�ce.org/.

[opttools] The MathWorks, Inc, �Optimization Toolbox�, available from http://www.mathworks.com.

45

